
Eur. Phys. J. B 48, 101–106 (2005)
DOI: 10.1140/epjb/e2005-00383-0 THE EUROPEAN

PHYSICAL JOURNAL B

Heat flow and efficiency in a microscopic engine

B.-Q. Ai1,a, H.-Z. Xie2, D.-H. Wen2, X.-M. Liu2, and L.-G. Liu3

1 School of Physics and Telecommunication Engineering, South China Normal University, 510631 GuangZhou, P.R. China
2 Department of Physics, South China University of Technology, 510641 GuangZhou, P.R. China
3 Department of Physics, ZhongShan University, 510275 GuangZhou, P.R. China

Received 6 September 2005
Published online 9 December 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. We study the energetics of a thermal motor driven by temperature differences, which consists
of a Brownian particle moving in a sawtooth potential with an external load where the viscous medium
is periodically in contact with hot and cold heat reservoir along space coordinate. The motor can work
as a heat engine or a refrigerator under different conditions. The heat flow via both potential and kinetic
energy is considered. The former is reversible when the engine works quasistatically and the latter is always
irreversible. The efficiency of the heat engine can never approach Carnot efficiency.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.70.-a
Thermodynamics – 87.10.+e General theory and mathematical aspects

1 Introduction

Recently, Brownian ratchets (motors) have attracted con-
sidered attention simulated by research on molecular mo-
tors [1,2]. A Brownian ratchet , which appeared in Feyn-
man’s famous textbook for the first time as a thermal
ratchet [3], is a machine which can rectify thermal fluc-
tuation and produce a directed current. These subjects
are motivated by the challenge to understand molecular
motors [4], nanoscale friction [5], surface smoothening [6],
coupled Josephson junctions [7], optical ratchets and di-
rected motion of laser cooled atoms [8], and mass separa-
tion and trapping schemes at the microscale [9].

Brownian ratchets are spatially asymmetric but peri-
odic structure in which transport of Brownian particles is
induced by some nonequilibrium processes [10–15]. Typ-
ical examples are external modulation of underling po-
tential, a nonequilibrium chemical reaction coupled to a
change of the potential and contact with reservoirs at dif-
ferent temperatures. The most studies have been on the
velocity of the transport particle. Another important as-
pect is efficiency of energy conversion.

Recently, Sekimoto has been unambiguously defined
the concept of the heat at mesoscopic scales in terms of
Langevin equation [16]. He refers to the formalism pro-
viding this definition as stochastic energetics. The essen-
tial point of this formalism is that the heat transferred to
the system is nothing but the microscopic work done by
both friction force and the random force in the Langevin
equation. Stochastic energetics has been applied to the
study of thermodynamic processes. Derenyi and Astu-
mian [17] have studied the efficiency of one-dimensional
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thermally driven Brownian engines. They identify and
compare the three basic setups characterized by the type
of the connection between the Brownian particle and the
two reservoirs: (1) simultaneous [3]; (2) alternating in
time [18]; and (3) position dependent [19]. Parrondo and
Cisneros [15] has reviewed the literature the energetics of
Brownian motors, distinguishing between forced ratchet,
chemical motors-driven out of equilibrium by difference of
chemical potential, and thermal motors-driven by temper-
ature differences. In this paper we give a detailed study of
the last motors-thermal motors.

Energetics of the thermal motors-driven by tem-
perature differences are investigated by some previous
works [20,21]. Asfaw et al. [20] have explored the perfor-
mance of the motors under various conditions of practical
interest such as maximum power and optimized efficiency.
They found that the efficiency can approach the Carnot
efficiency under the quasistatic limit. The same results are
also obtained in Matsuo and Sasa’s work [21] by stochastic
energetics theory. The previous works are limited to case
of heat flow via potential. The present work extends the
study to case of heat flow via both potential and kinet-
ics energy. The efficiency of heat engine is different from
the results of previous works and can never approach the
Carnot efficiency. The heat flow via potential is reversible
when the engine works at quasistatic limit. The heat flow
via the kinetic is always irreversible in nature.

2 Thermal motor works as a heat engine

Consider a Brownian particle moving in a sawtooth po-
tential with a external load force F . The medium is pe-
riodically in contact with two heat reservoirs along the
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space coordinate (shown in Fig. 1). There are two different
driving factors in the motor. The first one is noise-induced
transport, namely, ratchet effect. The second one is that
temperature difference makes the particle move from high
temperature reservoir to low temperature reservoir.

Let E be the barrier height of the potential. L1, L2 are
the length of the left part and the right part of the ratchet,
respectively. E + fL1 is the energy needed for a forward
jump, while E−fL2 is the energy required for a backward
jump. The left part of a period ratchet is at temperature
TH (hot reservoir) and the right one is at temperature
TC (cold reservoir). We can assume that the rates of both
forward and backward jumps are proportional to the cor-
responding Arrhenius’ factor [22], such that

Ṅ+ =
1
t

exp
[
−E + fL1

kBTH

]
, (1)

Ṅ− =
1
t

exp
[
−E − fL2

kBTC

]
, (2)

are the number of forward and backward jumps per unit
time, respectively, kB the Boltzmann constant, t a pro-
portionality constant with dimensions of time.

If Ṅ+ > Ṅ−, the ratchet works as a two-reservoir heat
engine shown in Figure 2. The rate of heat flow from hot
reservoir to the heat engine via potential is given by

Q̇pot
H = (Ṅ+ − Ṅ−)(E + fL1). (3)

The rate of heat flow from the engine to the cold reservoir
via potential is

Q̇pot
C = (Ṅ+ − Ṅ−)(E − fL2). (4)

The heat flow via the kinetic energy of the particle is much
more complicated to determined [17]. Whenever a particle
stay at a hot segment (temperature TH) it absorbs 1

2kBTH

energy on average from the hot reservoir. It can pick up
1
2kBTC energy on average from the cold reservoir when the
particle stay at a cold segment. It is obvious that when a
particle leaves from a hot segment to a cold segment and
then returns to the hot segment, the hot reservoir will lost
1
2 (kBTH − kBTC) energy on average, the lost energy is re-
leased to the colder reservoir and never to the hot reser-
voir or to the particle’s potential energy, which indicates
the inherently irreversible nature of this heat flow. On the
other hand, if a particle goes out from a hot segment to
a cold segment and never returns to the hot segment, the
hot reservoir will lost 1

2kBTH energy on average. In a unit
time, Ṅ+ particles will absorb 1

2Ṅ+kBTH energy from the
hot reservoir and Ṅ− particles will absorb 1

2Ṅ−kBTC en-
ergy from the cold reservoir. Therefore the rate of net heat
flow via kinetic energy from the hot reservoir to the cold
reservoir is given by

Q̇kin =
1
2
Ṅ+kBTH − 1

2
Ṅ−kBTC . (5)

Fig. 1. Schematic illustration of the motor: a Brownian par-
ticle moves in a sawtooth potential with an external load
where the medium is periodically in contact with two reser-
voirs along the space coordinate. The period of the potential
is L = L1 + L2. The temperature profiles are also shown.

Fig. 2. The engine acts as a heat engine. Heat flows via both
potential energy and kinetic energy in a thermal motor in con-
tact with two thermal baths at temperatures TH > TC , W
is power output, heat flows via potential energy is reversible,
heat flows via kinetic energy is irreversible.

Therefore, the rate of total heat transferred from the hot
reservoir is given by

Q̇H = Q̇plot
H + Q̇kin = (Ṅ+ − Ṅ−)

× (E + fL1) +
1
2
Ṅ+kBTH − 1

2
Ṅ−kBTC . (6)

The rate of total heat transferred to the cold reservoir is

Q̇C = Q̇plot
C + Q̇kin = (Ṅ+−Ṅ−) × (E−fL2)

+
1
2
Ṅ+kBTH− 1

2
Ṅ−kBTC . (7)

The power output is

Ẇ = Q̇H − Q̇C = (Ṅ+ − Ṅ−)fL. (8)

It is easy to obtain the efficiency of the heat engine

η =
Ẇ

Q̇H

. (9)

If the heat flow via the kinetic energy is not considered,
the efficiency is given by

ηpot =
Ẇ

Q̇pot
H

. (10)
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Fig. 3. Dimensionless heat flow qH ,qC and power output w vs.
the load x (τ = 0.1, ε = 2.0, µ = 0.1).

In order to discuss simply, we can rewritten equa-
tions (5–10) in a dimensionless form, then we get

qH =
Q̇Ht

kBTH
= e−ε/τ

[(
ε +

1
2

+ µx

)
ex0−µx

−
(

ε +
1
2
τ + µx

)
e(1−µ)x/τ

]
(11)

qC = e−ε/τ

[(
ε +

1
2

+ µx − x

)
ex0−µx

−
(

ε +
1
2
τ + µx − x

)
e(1−µ)x/τ

]
(12)

qkin =
Q̇kint

kBTH
=

1
2
e−ε/τ [ex0−µx − τe(1−µ)x/τ ] (13)

w =
Ẇ t

kBTH
= e−ε/τ [ex0−µx − e(1−µ)x/τ ]x (14)

η =
[ex0−µx − e(1−µ)x/τ ]x

(ε + µx + 1
2 )ex0−µx − (ε + µx + 1

2τ)e(1−µ)x/τ
(15)

ηpot =
x

ε + µx
, (16)

where

x =
fL

kBTH
, ε =

E

kBTH
, τ =

TC

TH
, µ =

L1

L
, x0 =

(1 − τ)ε
τ

.

(17)
From the above equations, one has ε ≥ 0, 0 ≤ τ ≤ 1,
0 ≤ µ ≤ 1. Since the motor acts as a heat engine, the
power output can not be negative, namely, w ≥ 0. one
can also obtain the x value range of x, 0 ≤ x ≤ xm, where

xm =
(1 − τ)ε

(τ − 1)µ + 1
. (18)
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Fig. 4. ηC , ηpot and η vs. the load x (τ = 0.1, ε = 2.0, µ = 0.1).

Therefore, it is easy to obtain

ηpot =
x

ε + µx
≤ xm

ε + µxm
= 1 − τ = 1 − TC

TH
= ηC , (19)

where ηC is Carnot efficiency. However, ηpot attains the
Carnot efficiency, namely, x = xm which indicates that
the power output is zero. From equations (15) and (16),
it obvious that η is always less than ηpot. The results are
given by Figures 3–10.

Figure 3 shows that the heat flow qH , qC and power
output w as a function of the load x. When x = 0, namely,
the engine runs without a load, qH is equal to qC , which
indicates that the heat that absorbs from the hot reservoir
releases to the cold reservoir entirely and no power output
is obtained. When x increases, qH and qC decreases. when
x → 0, no power output is obtained (w=0). When x →
xm, no currents occur, the ratchet can’t give any power
output. So the power output w has a maximum value at
certain value of x which depends on τ , ε and µ.

Figure 4 shows the variation of the efficiency ηC , ηpot,
η with the load x. If the heat flow via kinetic energy is
ignored, the efficiency ηpot increases with the load x, it
approaches the Carnot efficiency ηC at quasistatic con-
dition (x = xm). The result is also presented in Asfaw’s
work [20]. When the heat flow via kinetic energy are con-
sidered, the curve of the efficiency η is observed to be
bell-shaped, a feature of resonance. The efficiency η is al-
ways less than ηpot and never approaches Carnot efficiency
ηC . It is obvious that the heat flow via kinetic energy is
always irreversible and energy leakage is inevitable, so the
efficiency is less than ηpot and can’t approach Carnot effi-
ciency.

Figure 5a shows the heat flow qkin out of hot reservoir
via kinetic energy as a function of the load x. When x <
xm, qkin is positive. When x > xm, qkin is negative. No
heat flow occurs at x = xm. It is found that the heat flow
via kinetic is dependant on the current of the ratchet.
Figure 5b shows the heat flow out of the hot reservoir via
kinetic energy as a function of barrier height ε. The curve
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Fig. 5. (a) Dimensionless heat flow qkin vs. the load x (τ = 0.5.
ε = 2.0, µ = 0.5). (b) Dimensionless heat flow qkin vs. barrier
height ε for different values of x = 0.4, 1.0 (τ = 0.5, µ = 0.5).

is bell-shaped. Therefore, there is an optimized value of ε
at which qkin takes its maximum value.

Figure 6 shows the power output w as a function of
the load x for different values of µ = 0.1, 0.5, 0.8. From the
figure, we can see that the power output has a maximum
value at certain value of x. The maximum load xm of
the engine changes with the parameter µ of asymmetry
in potential. In other word, the structure of the potential
determines the maximum load capability of the engine.

Figure 7 shows the variation of the efficiency η with the
load x for different values of µ = 0.1, 0.5, 0.8. The maxi-
mum value of η increases with µ. However, the maximum
value of η can’t approach the Carnot efficiency.

Figure 8 shows the power output w as a function
of the barrier height ε for different values of the load
x = 0.1, 0.2, 0.5. When ε → 0, the effect of ratchet disap-
pears, the power output tends to zero. When ε → +∞ so
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Fig. 6. Dimensionless power output w vs. the load x for dif-
ferent values of µ = 0.1, 0.5, 0.8 (τ = 0.1, ε = 2.0).
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Fig. 7. Efficiency η vs. the load x for different values of
µ = 0.1, 0.5, 0.8 (τ = 0.1, ε = 2.0).

that the particle can’t pass the barrier, the power output
w goes to zero, too. The power output w has a maximum
value at certain value of ε which is dependant on τ , µ and
x. On the other hand, the minimum height of the barrier
for working as a heat engine increases with the load x.

Figure 9 shows the efficiency ηC , ηpot and η as a func-
tion of the barrier height. The efficiency ηpot without the
heat flow via kinetic energy approaches the Carnot effi-
ciency at ε = εm, at which no power output occurs. The
efficiency η is a peaked function of the barrier height ε
which is dependant on values of τ , x and µ.

Figure 10 shows plot of w, qH and η versus τ . From
the figure, we can see that w, qH and η change very slowly
at small τ and they decreases drastically near τ = τm.

When the load x is less than the maximum load xm,
the motor works as a heat engine. The power output is
a peaked function of the load x and the barrier height ε.
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Fig. 8. Dimensionless power output w vs. barrier height ε for
different values of x = 0.1, 0.2, 0.5 (τ = 0.1, µ = 0.1).
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Fig. 9. ηC , ηpot and η vs. the barrier height ε (τ = 0.1, x = 0.4,
µ = 0.1).

The efficiency η is less than the efficiency ηpot and can
never approach the Carnot efficiency ηC . The heat flow
via kinetic energy causes the energy leakage unavoidably
and reduces the efficiency of the heat engine.

3 Concluding remarks

In present work, we study the energestic of a thermal mo-
tor which consists of a Brownian particle moving a saw-
tooth potential with an external load where the viscous
medium is alternately in contact with hot and cold reser-
voirs along the space coordinate. We make a clear distinc-
tion between the heat flow via the kinetic and the poten-
tial energy of the particle, and show that the former is
always irreversible and the latter may be reversible when
the engine works quasistatically.

When the external load is not enough, the thermal
motor can work as a heat engine. The power output has
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Fig. 10. Dimensionless heat flow qH ,qC and power output w
vs. τ (x = 0.9, ε = 1.0, µ = 0.5).

a maximum value at certain value of the load x which de-
pendant on the others parameters. If only the heat flow
via potential is considered, the efficiency ηpot increases
with the load x and approaches the Carnot efficiency ηC

under quasistatic condition, which agrees with the previ-
ous work. When the heat flow via kinetic energy is also
considered, the efficiency η is less than ηpot and can never
approach the Carnot efficiency ηC . It is also found that
the structure of the potential decides the maximum load
capability of the heat engine. The heat flow via potential
is reversible, while the heat flow via kinetic energy is irre-
versible. The heat flow via kinetic energy reduces the heat
engine efficiency.

The thermal motor was initially proposed in an at-
tempt of describing molecular motors in biological sys-
tems. The heat flow via energy is irreversible, so the
efficiency (COP) can not approach the the Carnot effi-
ciency (COP) at a quasistatic condition. However, Molec-
ular motors are known to operator efficiency. They can
convert molecular scale chemical energy into macroscopic
mechanical work with high efficiency in water at room
temperatures, where the effect of thermal fluctuation is
unavoidable. Thus, the next challenging question would
be “How to reduce the heat flow via kinetic energy?”.
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